COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30-3:45 Building: Morrill 2 Room: 222

Topic 5.2: Probability, Statistics, and Evaluation
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Random Variable

- A random variable is a mathematical formulation of a quantity that depends on random events.
- We use upper case letters to represent random variables (e.g., X) and lower-case to represent constants (e.g., x).
- We can talk about the probability of a random variable X taking a value $x: \operatorname{Pr}(X=x)$.
- Example:
- If X is a roll of a fair die, then $\operatorname{Pr}(X=3)=1 / 6$.
- A full characterization of random variables is beyond the scope of this course, and can be a surprisingly deep topic (see "measure theoretic probability").

Probability Distribution

- A probability distribution (probability measure) gives the probability that a random variable takes different values.
- Technically it gives the probability of events (not necessarily values or outcomes), but a formal characterization of "events" is beyond the scope of this class.
- We can talk about the "distribution of a random variable."
- Example:
- Let p be the distribution of a fair die.
- $p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=\frac{1}{6}$
- For all such discrete distributions: $\forall x, p(x) \geq 0$ and $\sum_{x} p(x)=1$.

Probability Distribution (continued)

- We often say that we have multiple random variables "sampled from the same distribution".
- Here "sampled" is slightly imprecise.
- We really mean that we have multiple random variables, they all have the same distribution, and they are all statistically independent.
- i.i.d.: Independent and identically distributed.
- Example:
- Let X_{1} and X_{2} be two random variables, each representing a sample of a fair die.
- If the two die rolls are independent, what is $\operatorname{Pr}\left(X_{1}+X_{2}=7\right)$?

Realization or Instance of a Random Variable

- Once a random variable has been sampled, it takes a specific value.
- This is called a realization or instance of the random variable.
- A realization of a random variable is a constant.
- Let x_{1} and x_{2} denote the realization of two fair die rolls.
-What is $\operatorname{Pr}\left(x_{1}=x_{2}\right)$?
- Trick question! There is nothing random here. They are either equal or not, and so this probability is either 0 or 1.
- Think of x_{1} and x_{2} as symbols in place of specific numbers.
-What is $\operatorname{Pr}(3=3)$? What is $\operatorname{Pr}(1=2)$?

Random Data Sets

- In ML, we typically think of data sets as being random samples from some distribution, called the data generating distribution.
- Example: The GPA data set contains samples from the distribution of students applying to UFRGS.
- We may write (X, Y) to denote a random variable representing one sample from this distribution.
- A data set contains many of these random variables: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$.
- This data set is itself a random quantity!
- We can reason about things like $\operatorname{Pr}\left(X_{1}=X_{2}\right), \operatorname{Pr}\left(Y_{1}=Y_{2} \mid X_{1} \neq X_{2}\right)$, or even the probability of the MSE of the model learned by NN being below a constant value!

Random Data Sets: Example

- Consider a data set containing $n=2$ rolls of a fair die.
- X_{1} and X_{2} are random variables representing independent rolls of the die:

$$
\operatorname{Pr}\left(X_{1}=1\right)=\operatorname{Pr}\left(X_{1}=2\right)=\operatorname{Pr}\left(X_{1}=3\right)=\operatorname{Pr}\left(X_{1}=4\right)=\operatorname{Pr}\left(X_{1}=5\right)=\operatorname{Pr}\left(X_{1}=6\right)=\frac{1}{6}
$$

- The data set is $\left(X_{1}, X_{2}\right)$.
-What is $\operatorname{Pr}\left(X_{1}=X_{2}\right)$?

Non-Random Data Sets

- The data set that we see is one sample of the random variables.
- Once we have the data set as a computer file, it is no longer random, and so we write: $\left(x_{i}, y_{i}\right)_{i=1}^{n}$.
- In the die example, the data set is $\left(x_{1}, x_{2}\right)$.
- Here x_{1} and x_{2} are symbols representing numbers (not random!).
-What is $\operatorname{Pr}\left(x_{1}=x_{2}\right)$?
- It's either zero or one! Either they are equal or not. There is nothing random about $x_{1}=x_{2}$!

Random vs Non-Random

- Note: Different ML texts take different random/not-random perspectives for data sets!
- Texts emphasizing principled theory typically take the random perspective.
- Texts emphasizing basic practice typically take the non-random perspective.
- When writing pseudocode for an algorithm, should we view the data as random or non-random?
- No agreed-upon convention!

Random vs Non-Random Terminology

- The terms random and non-random are imprecise.
- People often use random to mean "uniform random."
- Its precise meaning is "is a random variable."
- A random variable can always take the same value, effectively being constant!
- Random \rightarrow Stochastic (avoids confusion with "uniform random")
- Sometimes "stochastic" is used to mean "not constant".
- Ideally the use of "stochastic" or "random" is clear from context. When it's not, ask (or if you're speaking, clarify)!
- Non-Random \rightarrow Deterministic or constant (cannot be "random").

Probability and Statistics Terminology

- Parameter / Population Statistic: A parameter is a property of a probability distribution (or random variable), like the mean or variance.
- Example: Mean E[X]
- Sample: One or more "draws" of a random variable.
- $X_{1}, X_{2}, \ldots, X_{n}$ might be random variables representing n samples.
- Example: These represent n rolls of the same die
- Often samples $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed (i.i.d.).
- $x_{1}, x_{2}, \ldots, x_{n}$ might be the realization of n samples.
- Example: The actual outcomes of n rolls of a die.
- It is not meaningful to discuss whether $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d.

Probability and Statistics Terminology

- Statistic / Sample Statistic: Statistics are properties of a sample.

To emphasize this, we sometimes say "sample statistic."

- Example: Sample mean $\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Notice that the sample mean is itself a random variable!
- We can also consider a realization of the sample mean: $\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

Mean Squared Error (revisited)

- The MSE is:

$$
\mathrm{MSE}=\mathbf{E}\left[\left(Y-\widehat{Y}_{i}\right)^{2}\right]
$$

- This is a parameter or population statistic.
- The sample MSE is:

$$
\widehat{\mathrm{MSE}}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} \quad \text { or } \quad \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-y_{i}\right)^{2}
$$

- This is a statistic or sample statistic.
- The "hat" means "an estimate" and the n-subscript indicates it is computed from n samples.
- Our goal is typically to optimize a parameter.
- We don't know this parameter's value.
- In an attempt to achieve this goal, we use sample statistics.
- We can compute sample statistics from data!

Can we trust sample statistics?

- How much we should trust sample statistics depends on:
- The number of samples, n.
- If the average of 3 die rolls is 4 , and the average of 3,000 die rolls is 3.47 , which do you trust more?
- The variance of the samples.
- Consider the samples (-1, $-0.3,0,0.5,0.8$) versus ($-820,-214,12,480,542$)
- Both have sample mean 0 . Which are you more confident has a mean in the range [-10,10]?
- Idea: Use the number of samples and variance of samples to estimate how accurate the sample statistic is.

Confidence Interval

- We will use the number of samples and their variance to construct a confidence interval for the parameter (e.g., MSE) based on the sample statistic (sample MSE).
- A confidence interval is an interval (range of numbers) that contains a parameter with a specified confidence, $1-\delta$.
- If $[L, U]$ is a $1-\delta$ confidence interval for the mean μ, then

$$
\operatorname{Pr}(L \leq \mu \leq U) \geq 1-\delta
$$

- Question: What is random in this statement of probability?
- Answer: The confidence interval is random! It is typically computed from data. Different samples of data result in different lower and upper bounds.

Standard Error

- One common way to obtain a confidence interval is using standard error.
- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of n numbers.
- Let σ be the sample standard deviation of this sequence (with Bessel's correction):

$$
\begin{gathered}
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \\
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{gathered}
$$

- The standard error is then

$$
\mathrm{SE}=\frac{\sigma}{\sqrt{n}} .
$$

Using Standard Error

- If $X_{1}, X_{2}, \ldots, X_{n}$ are n random variables and:
- The random variables are i.i.d. with mean μ.
- The random variables are each normally distributed.
- $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the sample mean.
- Then $[\bar{X}-1.96 \times$ SE, $\bar{X}+1.96 \times \mathrm{SE}]$ is a 95% confidence interval for μ.
- That is:

$$
\operatorname{Pr}(\bar{X}-1.96 \times \mathrm{SE} \leq \mu \leq \bar{X}+1.96 \times \mathrm{SE}) \geq 0.95
$$

- Note: There exist other confidence intervals for the mean that don't assume that data is normal (e.g., Maurer \& Pontil), and even confidence intervals that don't assume independence (e.g., Azuma) or identically distributed samples (e.g., Hoeffding)!
- In general, all confidence intervals to make some assumptions, but the assumptions differ.
- Confidence intervals with weaker assumptions tend to be "loose" (have wide intervals).

Mean Squared Error (re-revisited)

- MSE: $\mathrm{MSE}=\mathbf{E}\left[\left(Y-\hat{Y}_{i}\right)^{2}\right]$.
- Sample MSE: $\widehat{\operatorname{MSE}}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$.
- Let $Z_{i}=\left(Y_{i}-\widehat{Y}_{i}\right)^{2}$.
- Notice that $\mu=\mathbf{E}\left[Z_{i}\right]=$ MSE, and let SE be the standard error of $Z_{1}, Z_{2}, \ldots, Z_{n}$.
- So, $\widehat{\operatorname{MSE}}_{n} \pm 1.96 \times$ SE is a 95% confidence interval for the actual MSE (under normality assumptions).
- Although normality assumptions often false, this gives a rough idea of how much the sample MSE can be trusted.

Intermission

- Class will resume in 5 minutes.
- Feel free to:
- Stand up and stretch.
- Leave the room.

- Talk to those around you.
- Write a question on a notecard and add it to the stack at the front of the room.

End

